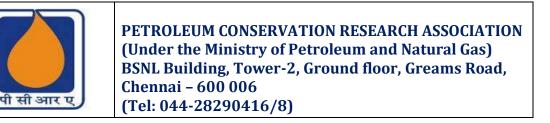
ENERGY AUDIT REPORT



Crescent Institute of Science & Technology,

GST Road, Vandalur, Chennai,

Tamil Nādu - 600 048.

CONDUCTED BY

Acknowledgement

Petroleum Conservation Research Association conveys their gratitude and thanks to the management of **M/s Crescent Institute of Science & Technology – Chennai,** for giving us an opportunity to study their College & equipment's for the Energy Audit, which was conducted in **Feb** - **2022**

We render our sincere thanks to Mr.V.N.A. JALAL, Director (Planning & Development) and Dr. Kaliluthin, Asso Professor/Civil & Deputy Director (Campus Development & Maintenance) for his keen interest, co-operation, proactive support for providing a platform to understand some of the critical process of operation, whole hearted support, helps and guidance during the course of study of the plant.

We are indeed touched by the helpful attitude and co-operation **Mr. Ramkumar, AP/EEE & Executive Engineer (Electrical) and Mr. E. Manivannan, Junior Engineer** and all technical staff, who rendered their valuable assistance and co-operation during the course of study.

The Audit team constituted of the following officers from PCRA.

Name of PCRA Team Members

- 1. Mr. M. Srinivasan, Sector Expert-Industry (SR-Chennai)
- 2. Mr. K.M. Nagulan, Dy. Director (SR-Chennai)
- 3. Mr. AM. Santhosh Kumar, Chief Regional Co-Ordinator (SR-Chennai)

Mr. K.M. Nagulan Dy. Director (SR), Chennai

M. Linen.

Mr. M. Srinivasan Sector Expert-Industry (SR), Chennai BEE-CEA 17707

Mr. A. M. Santhosh Kumar Addl. Director & Chief Regional Coordinator (SR), Chennai

Acknowledgement

Petroleum Conservation Research Association conveys their gratitude and thanks to the management of **M/s Crescent Institute of Science & Technology – Chennai,** for giving us an opportunity to study their College & equipment's for the Energy Audit, which was conducted in **Feb - 2022**

We render our sincere thanks to **Mr.V.N.A. JALAL**, **Director (Planning & Development) and Dr. Kaliluthin**, **Asso Professor/Civil & Deputy Director (Campus Development & Maintenance)** for his keen interest, co-operation, proactive support for providing a platform to understand some of the critical process of operation, whole hearted support, helps and guidance during the course of study of the plant.

We are indeed touched by the helpful attitude and co-operation **Mr. Ramkumar, AP/EEE & Executive Engineer (Electrical) and Mr. E. Manivannan, Junior Engineer** and all technical staff, who rendered their valuable assistance and co-operation during the course of study.

The Audit team constituted of the following officers from PCRA.

Name of PCRA Team Members

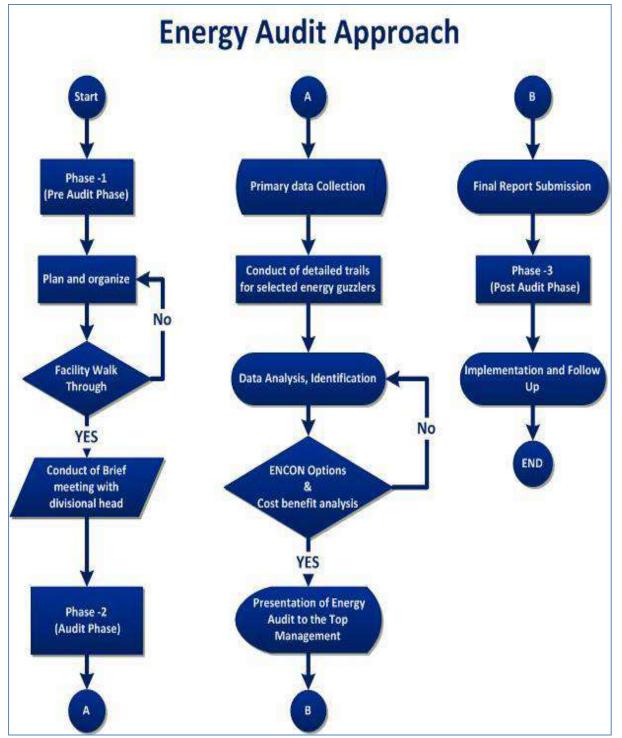
- 1. Mr. M. Srinivasan, Sector Expert-Industry (SR-Chennai)
- 2. Mr. K.M. Nagulan, Dy. Director (SR-Chennai)
- 3. Mr. AM. Santhosh Kumar, Chief Regional Co-Ordinator (SR-Chennai)

Mr. K.M. Nagulan **Dy. Director (SR), Chennai** Mr. M. Srinivasan Sector Expert-Industry (SR), Chennai BEE-CEA 17707

Mr. A. M. Santhosh Kumar Addl. Director & Chief Regional Coordinator (SR), Chennai

Table of Contents

Acknowledgement	2
DETAILS OF CONSUMER	6
PLANT ENERGY SAVINGS IDENTIFIED	8
1. INTRODUCTION	10
1.1 Preamble	10
1.2 Objective	11
1.3 Scope of Work	11
1.4 Methodology	12
1.5 List of Instruments Used	12
2. BASELINE DATA FOR ENERGY AUDIT	14
2.1 Electricity	14
3. TRANSFORMER AND ELECTRICAL DISTRIBUTION SYSTEM	15
3.1 Transformer	15
3.1.1 Time Vs Current Analysis (800 kVA Transformer-2)	15
3.1.2 Time vs Apparent Power (kVA) Analysis (800 kVA Transformer-2)	16
3.1.3 Time Vs Apparent Power (kVA) Analysis for 800 kVA Transformer-3 Panel	16
3.1.4 Time Vs Actual Power (kW) Analysis (800 kVA Transformer-3):	17
3.1.5 Time Vs Power Factor analysis (PF) Analysis (800 kVA Transformer-3)	17
3.2 Transformer Loading	18
3.2.2 Transformer Best Loading %	19
Feeder power Measurement	19
4. REVIEW OF ELECTRICITY BILL	20
4.1 Analysis of Electricity Bill	20
4.2 Month Vs Energy Consumption Analysis	20
4.3 Energy Consumption Month wise	21
4.4 Month vs Total Cost Analysis	22
4.5 Month vs Demand Analysis	22
4.6 Month vs PF Analysis	23
5. LIGHTING SYSTEM	24
6. CHILLER & AIR CONDTIONERS	27
6.1 Introduction	27
6.2 Study of AC	28
6.3 Study of Chillers:	29
Petroleum Conservation Research Association, Southern Region	3



7. PUMPS	30
7.1 Introduction	30
7.2 Study of Primary Pumps	30
7.2 Study of domestic water supply Pumps	31
8. SOLAR WATER HEATER	34
8.1 Introduction	34
8.2 Study of solar heaters	34
9. SOLAR POWER	35
10 DIESEL GENERATOR SYSTEM	36
11. ENERGY CONSERVATION PROPOSALS	38
ECM-1: Replace 1x36 W FTL Lamps with Energy Efficient LED Lamps	38
ECM-2: Replace 400 W Halogen lamps with Energy Efficient LED Lamps	40
ECM-3: Replace CFL lamps with Energy Efficient LED Lamps and reduce power consumption	41
ECM-4: Install Occupancy Sensors at identified location to save lighting power consumption	42
ECM 5 Replace conventional ceiling fans with EE BLDC fans	43
ECM-6: Replace In-efficient Air Cooled Chiller with Energy Efficient Air Cooled Chiller	44
ECM-7: Provide pipe line to fill the sump to avoid multiple pumping	46
ECM-8: Switch OFF PG block pump and use well pump to supply to OH tank	47
ECM-9: Replace identified water pumps with EE pumps and reduce energy consumption	48
ECM 10 Reduce Contract Demand and save Demand cost	50
ECM-11: Clean Solar Roof Top Panel and increase power generation	51
12. CONCLUSION	53

Crescent

DETAILS OF CONSUMER

1.	Name of the Consumer	: Crescent Institute of Science & technology,							
2.	Name of the Contact Person	:	Mr.	Ramkumar,	AP/EEE	&	Executive	Engineer	
			GST I	Road, Vandalur	- -)				
			Chen	inai, Tamilnad	u – 600 04	8.			
3.	Website	: v	vww.	Crescent.educ	ation.com				
4.	Contract Demand	:	1200	KVA					
5.	Maximum Demand Reached	:	763 K	WA (Dec -2021	1)				
6.	Demand Charge	:	Rs. 35	50/KVA					
7.	Annual Energy Consumption	:	24,33	8,173 kWh/An	num				
8.	Annual Amount Paid to TNEB	:	Rs. 1,6	65,65,429/Anr	num				
9.	Purpose of Consumer	:	Indus	trial					
10	. Name of Supplier's office	:]	ГNEB						

EXECUTIVE SUMMARY -Crescent-Chennai									
Sl. No	Energy Conservation Measures	Annua	Savings	Investment	Payback				
31. NO	Ellergy conservation Measures	kWh	Rs.	Rs.	Months				
	Lightings & Fans								
1	Replace FTL Lamps with LED and reduce power consumption	960	6,528	3,600	7				
2	Replace Halogen Lamps with LED and reduce power consumption	5,760	39,168	36,000	11				
3	Replace CFL Lamps with LED and reduce power consumption	540	3,672	6,000	20				
4	Provide Occupancy sensor in identified areas and reduce light power consumption	1,339	9,107	20,000	26				
5	Replace conventional Ceiling fans with BLDC fans	11,100	75,480	3,00,000	48				
	Air Conditioner								
6	Replace In-efficient Air Cooled Chiller with Energy Efficient Air Cooled Chiller	77,200	5,24,960	30,00,000	69				
	Pumps								
7	Switch OFF PG block pump and use well pump to supply to OH tank	1,820	12,376	Nil	Immediate				
8	Provide pipe line to sump to avoid multiple pumping	2,450	16,660	10,000	7				
9	Replace identified water Pumps with EE pumps and reduce Energy Consumption	6,766	46,010	2,20,000	57				
	Demand & Renewable								
10	Reduce unutilized contract demand to save on maximum demand Charges	0	7,56,000	Nil	Immediate				
11	Clean Solar roof top panel and increase power generation	2,06,271	14,02,643	1,00,00,000	86				
	Summary of Savings								
	Total Annual kWh Savings by EB	3,14,206	28,92,603	1,35,95,600	56				
	Total Savings Percentage in EB Consumption	13							
	Annual Savings in KLOE by EB Consumption			27					
	Total Savings Percentage in Cost Consumption	17							

PLANT ENERGY SAVINGS IDENTIFIED

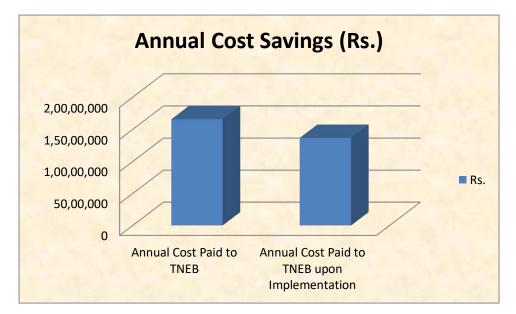
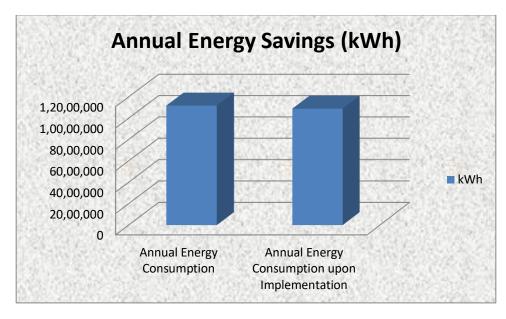
1. Annual Energy Savings

Annual Energy Savings : 3, 14,206 kWh / Annum.

2. Annual Cost Savings

Annual Cost Savings (kWh) : Rs. 28, 92,603 / Annum.

- **3. Proposed Investment (Total)** : Rs. 1, 35, 95,600
- **4. Overall Payback period** : 56 Months.

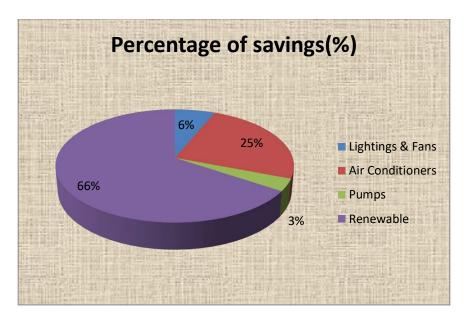

Figure 1 : Annual Cost Savings

Figure 2 : Annual Energy Savings (%)

Figure 3: Savings (%)

1. INTRODUCTION

1.1 Preamble

Since 1984, B.S. Abdur Rahman Crescent Institute of Science and Technology is a renowned Quality Leadership Institution located at the greenest spot of Chennai near Tambaram. Through our long history of 38 years of excellence, the Institution has offered access to a wide range of academic opportunities. With 54 programmes, grouped under 12 different Schools, 31 Undergraduate programmes, 23 Postgraduate programmes, and Ph.D. (in all the departments), this institution is a rising stalwart in higher education with promising Quality, Security and Placement. We welcome students from all countries and our educational programmes are designed to equip the learners with virtual knowledge that helps them to achieve what they want to be and go where they want to go in the ladder of success.

This institution is an intellectual destination that challenges conventional thinking and stimulates passion to redefine learning. The distinctive teaching at this institution makes the students and scholars to compete with themselves and each other. Apart from providing top-notch education, our green campus and well-planned student life are solely dedicated to making students utilize the ambiance to the fullest. Through our wide array of educational programmes and unique clubs to foster student development activities, we provide opportunities and experiences that build community, help you grow personally and professionally, and create a place that you can call home now and throughout your life.

Plant Location:

The CRESCENT – Chennai is set up at Vandalur- Chennai, Chengalpattu District of Tamilnadu State.

1.2 Objective

The energy audit is being conducted to identify areas of energy saving, both without and with investment.

This energy audit will also identify priorities for energy saving depending on saving potentials skills and time frame for execution, investment cost and payback etc.

1.3 Scope of Work

- 1 **Review of Electricity Bills, Contract Demand and Power Factor:** For the last one year, in which possibility will be explored for further reduction of contract demand and improvement of P.F.
- 2 Electrical System Network: Which would include detailed study of all the Transformer operations of various Ratings / Capacities, their Operational Pattern, Loading, No Load Losses. The study would also cover possible improvements in energy metering systems for better control and monitoring.
- 3 Electrical Motors, study of above 5 kW motors in terms of measurement of Voltage (V), Current (I), Power (kW) and P.F. in a complete cycle, and thereby suggesting measures for energy saving like reduction in size of motors or installation of energy saving device in the existing motors. Study of Mechanical Power Transmission Systems to evolve suitable recommendations wherever feasible for Energy Efficiency Improvements.
- 4 **Air Conditioning System (Chiller & AC):** The audit would involve analysis of various parameters. Measurement of Specific Energy Consumption i.e. kW/TR of refrigeration, study of Refrigerant Compressors, Chilling Units etc. Further, various measures would be suggested to improve its performance.
- 5 **Illumination System:** Study of the illumination system, LUX level in various areas, area lighting etc. and suggest measures for improvements and energy conservation opportunity wherever feasible.
- 6 DG Sets: Study the operations of DG Sets to evaluate Specific Energy Generation and

subsequently identify areas wherein energy savings could be achieved.

7 **Pumping System:** Detailed Study of Pumps Measurement Analysis involves Pump Performance Study.

1.4 Methodology

PCRA deputed a team of experts for conducting the study and they worked in close association with the staff and officers of Crescent – Chennai.

PCRA submitted an execution plan for assignment which was mutually agreed and relevant data support was provided by Crescent – Chennai.

Mr. Kaliluthin nominated persons from Engineering / Maintenance section with a coordinator from Managerial level for this audit.

The audit was started with an orientation meeting with Management / Engineering / Maintenance personals.

PCRA team conducted all necessary field trials and collected various data for analysis.

All the instruments support was provided by PCRA for conducting the field study where in following instruments were used

1.5 List of Instruments Used

S. No	Instrument name	Specification
	Power Analyser – Fluke 434	
	a. ACV (True RMS)	Up to 33000V
1	b. ACA (RMS)	0.5 to 10000 A
	c. Frequency	40 to 69 Hz
	d. Channels	4V / 4l
	Lux Meter	
	a. Meas. Range	0 to 99999 lux
2	b. Accuracy	+/-3%
	c. Measurement Rate	0.5 Sec
	d. Units	Lux, Foot candle
	Clamp on Meter	
3	a. Range	0 to 600 Amps
	b. Accuracy	+/- 1% of reading

Bouquets to CRESCENT-Chennai:

The following energy savings are already implemented in CRESCENT-Chennai:

- 1. Generating Solar power
- 2. LED lightings
- 3. VRF AC
- 4. Occupancy Sensor
- 5. EE Ceiling Fans

2. BASELINE DATA FOR ENERGY AUDIT

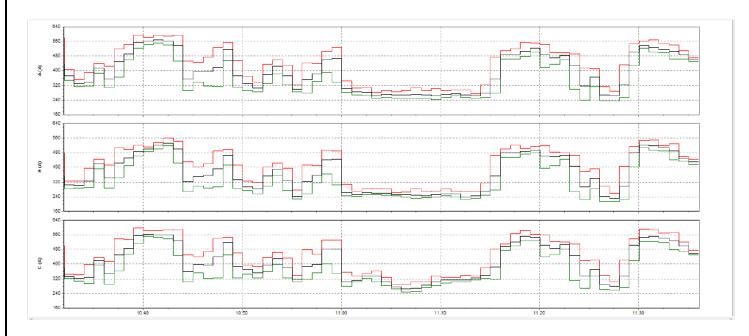
2.1 Electricity

Plant Energy Profile of CRESCENT – Chennai is given below (Jan -21 to Dec - 21)

1. Contract Demand of the Plant	: 1200 kVA
2. Maximum Demand Recorded	: 763 kVA (Dec -2021)
3. Average Demand Recorded	: 544 kVA
4. Purpose of Consumer	: Industrial
5. Name of Supplier's office	: TNEB
6. Annual Energy Consumption	
Total Energy Consumption	: 24, 33,173 kWh/ Annum
Unit Cost	: Rs 6.8 / kWh
7. Annual Energy bill	
Total Electricity bill paid to TNEB	: Rs. 1, 65, 65,429 /Annum

3. TRANSFORMER AND ELECTRICAL DISTRIBUTION SYSTEM

3.1 Transformer

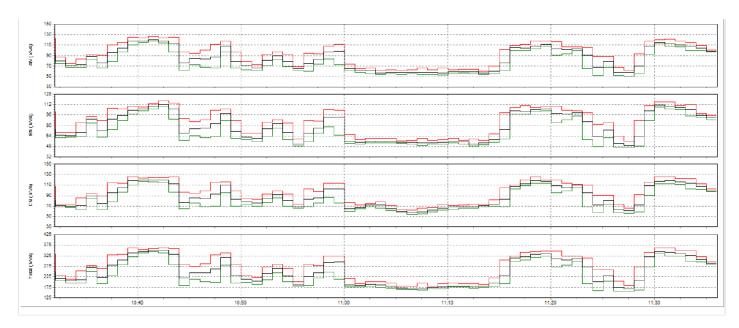

At Presently CRESCENT- Chennai Receives Power from (TNEB) at 11 kV and steps it down to 433 Volt using following Transformer:

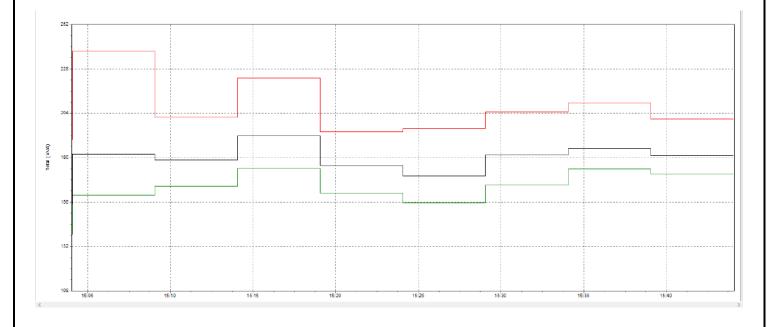
Unit **Transformer-2 Transformer-3 Transformer-1 Description** Make Universal Universal Kirloskar kVA 800 800 500 Capacity Year 2008 2008 2008 Voltage 11 kV/433 V 11 kV/433 V 11 kV/433 V 42 (HV);1066.66 42 (HV);1066.66 Current Α 666.6 (LV) (LV)(LV)

The Following Table showing the Design Details of the Transformer

3.1.1 Time Vs Current Analysis (800 kVA Transformer-2)

The Time Vs. Current (V) analysis for 800 kVA Transformer is given in following figure

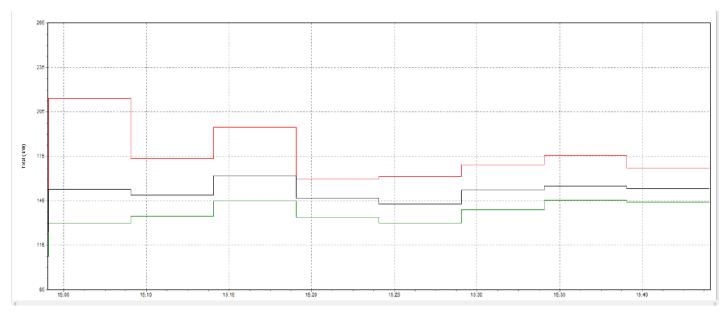


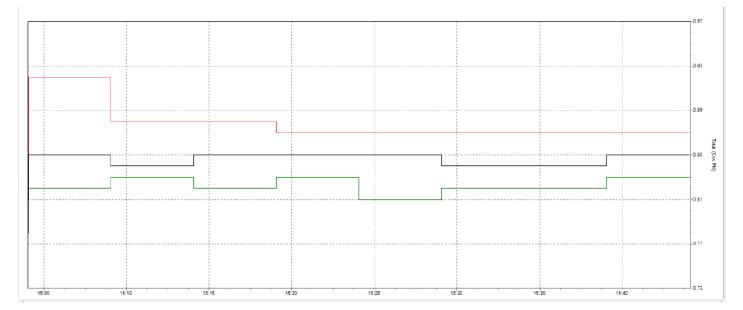

3.1.2 Time vs Apparent Power (kVA) Analysis (800 kVA Transformer-2)

The Time Vs Apparent Power (kVA) analysis for 800 kVA Transformer is given in following figure.

3.1.3 Time Vs Apparent Power (kVA) Analysis for 800 kVA Transformer-3 Panel

The Time Vs Apparent Power (kVA) analysis for 800 kVA Transformer is given in following figure.




3.1.4 Time Vs Actual Power (kW) Analysis (800 kVA Transformer-3):

The Time Vs Active Power (kW) for 800 kVA Transformer Panel is given in following figure.

3.1.5 Time Vs Power Factor analysis (PF) Analysis (800 kVA Transformer-3)

The Time Vs Power Factor (PF) analysis for 800 kVA Transformer is given in following figure.

3.2 Transformer Loading

Transformer is a static device. Hence the losses of transformer are very low thus giving very high efficiency.

CRESCENT – Chennai Depot has three Transformer (2*800 KVA) and 1*500 kVA for energizing the college.

For backup power supply, like emergency and critical loads, 2 DG sets of (1* 750 KVA) & (1*500 kVA) capacity is put into operation during grid power failure.

The following table will give the Loading percentage of Transformer.

Description	Rated	L	oading kVA		Loading %			
	Capacity(kVA)	Minimum	Maximum	Average	Minimum	Maximum	Average	
Transformer-2	800	150	350	250	19	44	31	
Transformer-3	800	130	210	170	16	26	21	

Note:

Transformer-2 is loading around 30% & Transformer-3 is loading around 20%. It is suggested to use standby Transformer 500 kVA for Transformer-3 load.

On Line Tap Charger (OLTC) is not available in the Transformer. During audit, voltage is found low but it is not increased by manual tap changer.

Transformer

3.2.2 Transformer Best Loading %

The maximum load can be loaded on the transformer to utilize at best efficiency by using this

formula:	= $\sqrt{\text{(no load losses/full load losses)}}$ * Rated KVA
	$=\sqrt{(1.5/11.1)*800}$
	= 294 kVA.
	= 36.7 %

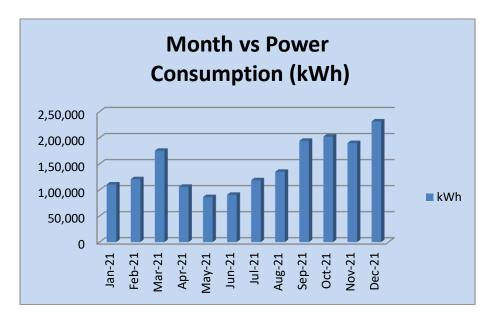
Transformer Best Efficiency								
Description	Design Rating	Best Efficiency at Loading %						
Transformer	800	36.7						

Feeder power Measurement

The following table gives the feeder wise power measurement in college campus

	Feeder Power Measurement											
Sl.No.	Description	Voltage	Current	Power Factor	Active Power	Apparent Power	Remarks					
		V	Ι	COS Φ	kW	kVA						
1	Life science block	389	49.00	0.9	29.7	33.0						
2	Architecture	385	30.0	0.98	19.6	20.0						
3	Science block panel-1	388	41.0	0.98	27.0	27.6						
4	Science block panel-2	385	42.00	0.91	25.5	28.0						
5	Main block	392	0.00		0.0		Solar					
6	Aerodynamics	390	0.00		0.0		power feed					
7	CIIC	393	30.00	0.60	12.3	20.4						

Energy meters are fixed in each outgoing panels but it is not working. It has to be replaced with new meters. MCCB type isolators has to be changed for easy operation of panels



4. REVIEW OF ELECTRICITY BILL

4.1 Analysis of Electricity Bill

Contract Demand (kVA)	:	1200 KVA
Demand Charges (Rs)	:	Rs. 350/ kVA
Unit Rate (Rs / kWh)	:	Rs. 6.35
Total Units Consumed	:	24, 33,173 kWh
Total Electricity Bill	:	Rs. 1, 65, 65,429

4.2 Month Vs Energy Consumption Analysis

Figure 3: Month Vs Energy Consumption Analysis

Monthly TNEB power consumption is varied depends on Solar power generation.

4.3 Energy Consumption Month wise

Average Unit cost is around Rs 9.4 for considering TNEB power. Due to solar power the unit cost is reduced to Rs. 6.8. For savings calculation, unit cost is taken as Rs 6.8 (average of 1 year).

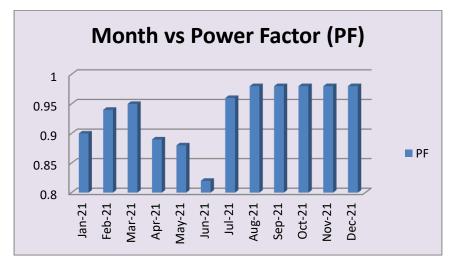
	EB ANALYSIS FOR THE YEAR 2021												
No	Months	Contract Demand (kVA)	90% Demand (kVA)	Actual Recorded Demand (kVA)	Billed Demand (kVA)	Demand Cost (Rs.)	TNEB units	Solar Units	Total Energy Consumption, kWh	PF Penalty	Total Amount	Unit Cost	
1	Jan-21	1200	1080.0	410.4	1080	3,78,000	1,10,675	58,612	1,69,287		11,27,033	6.7	
2	Feb-21	1200	1080.0	544.0	1080	3,78,000	1,20,851	52,776	1,73,627		12,08,516	7.0	
3	Mar-21	1200	1080.0	650.4	1080	3,78,000	1,75,188	78,846	2,54,034		15,60,516	6.1	
4	Apr-21	1200	1080.0	414.24	1080	3,78,000	1,06,182	66,549	1,72,731	8,192	11,04,888	6.4	
5	May-21	1200	1080.0	229.44	1080	3,78,000	86,406	61,986	1,48,392	12,580	9,74,404	6.6	
6	Jun-21	1200	1080.0	353.28	1080	3,78,000	90,858	50,485	1,41,343	84,072	10,81,321	7.7	
7	Jul-21	1200	1080.0	422.4	1080	3,78,000	1,18,794	40,734	1,59,528		11,81,421	7.4	
8	Aug-21	1200	1080.0	578.4	1080	3,78,000	1,34,968	57,243	1,92,211		12,92,481	6.7	
9	Sep-21	1200	1080.0	732.48	1080	3,78,000	1,94,262	57,699	2,51,961		16,89,097	6.7	
10	0ct-21	1200	1080.0	756.96	1080	3,78,000	2,02,398	50,382	2,52,780		17,45,548	6.9	
11	Nov-21	1200	1080.0	668.16	1080	3,78,000	1,89,984	41,813	2,31,797		16,61,138	7.2	
12	Dec-21	1200	1080.0	762.72	1080	3,78,000	2,31,378	54,104	2,85,482		19,39,065	6.8	
	Total	1,200	1,080	544	1,080	45,36,000	17,61,944	6,71,229	24,33,173	1,04,844	1,65,65,429	6.8	

4.4 Month vs Total Cost Analysis

Figure 4: Month Vs Total Cost Analysis

From the above analysis it is evident that Maximum Total Cost paid is more when the solar power generation is low during rainy months.

4.5 Month vs Demand Analysis


Figure 5: Month Vs Demand Analysis

Maximum demand is more at the time of rainy month-763 kVA. The average Maximum demand is 544 kVA only. It is suggested to reduce Contract demand from 1200 kVA to 1000 kVA considering new proposed chiller.

4.6 Month vs PF Analysis

Figure 6: Month Vs PF Analysis

Power Factor is low for 3 months and penalty is paid to TNEB. APFC panel is not working and it has to be corrected.

5. LIGHTING SYSTEM

Lighting is a very significant aspect from utility as well as from aesthetic point of view for any plant whether it is industrial or commercial. The efficiency, comfort factors and the quality of lighting should not be compromised.

Office lamps are replaced with LED lamps to reduce energy consumption. There are 12 Halogen lamps 400 W are available in the playground. All Halogen lamps are to be replaced with 200 W LED.

CFL lamps are partially replaced with CFL and balance lamps has to be replaced. The detail is as follows:

CFL LIST						
SL NO	BUILDING	CFL				
1	AUDITORIUM	86				
2	SCIENCE BLOCK	15				
3	AERO BLOCK	28				
4	MAIN BLOCK	24				
5	MBA BLOCK	16				
6	FIRST YEAR BLOCK	12				
7	LIFE SCIENCE BLOCK	42				
8	STAFF QUARTERS	32				
9	LADIES HOSTEL	42				
10	VC VILLA	22				
11	GUEST HOUSE	6				
12	MENS HOSTEL	120				
	TOTAL 445					

Sl.No.	Location	Measured Lux -1	Measured Lux -2	Measured Lux -3	Average Lux
1	Estate office	170	230	150	183
2	Sub station	45	40	38	41
3	Substation front	12	15	10	12
4	FM Lab front	11	13	12	12
5	Basic science block front	22	23	17	21
6	Aeronautical block front	27	21	22	23
7	Pump room front	8	13	10	10
8	Play ground	40	33	28	34
9	Elec science block front	20	15	17	17
10	Auditorium front	39	40	25	35
11	Canteen front	37	31	30	33
12	ATM front	33	35	31	33
13	Main block front	11	10	18	13
14	Staff canteen front	13	14	8	12
15	Pharmacy front	22	20	18	20
16	Architecture block front	9	10	8	9
17	NSS room front	8	10	11	10

Lux measurement has been carried out for street lights area. The following is the measured data:

It has been found that some high mast area lux level is high and it is suggested to switch OFF some lamps to reduce energy consumption.

Lighting

Fans:

Conventional ceiling fans and EE fans are installed in college premises. The details is as follows:

FAN LIST						
SL						
NO	BUILDING	Ceiling fan				
1	AUDITORIUM	22				
2	SCIENCE BLOCK	174				
3	AERO BLOCK	287				
4	MAIN BLOCK	231				
5	MBA BLOCK	123				
6	FIRST YEAR BLOCK	146				
7	LIFE SCIENCE BLOCK	124				
8	STAFF QUARTERS	460				
9	LADIES HOSTEL	346				
10	MEDICAL	12				
11	PHARMACY	86				
12	GM OFFICE	18				
13	CANTEEN	56				
14	VC OFFICE	2				
15	VC VILLA	10				
16	GUEST HOUSE	8				
17	DRIVERS CABIN	4				
18	HR OFFICE	2				
19	NEW ARCHITECTURE BLOCK	156				
20	CIVIL YARD CLASS ROOMS	48				
21	FOOD WASTE MANAGEMENT PLANT	1				
22	MENS HOSTEL	1650				
23	MBA PHASE 1	12				
24	MBA PHASE 2	8				
25	CIIC BLOCK	22				
26	CIIC 2ND FLOOR STUDIO	2				
27	DRAWING HALLS	36				
20	CANTEENS & OUTDOOR LIGHTING	24				
28		24 4070				
	TOTAL					

Conventional has to be replaced with BLDC fans to reduce power consumption.

6. CHILLER & AIR CONDTIONERS

6.1 Introduction

In CRESCENT - Chennai using Chiller for Auditorium and Split AC for office comfort cooling. The following table

gives the details.

	Chiller & A	C List	
S.No	Location	Type of Units	No
1	Auditorium	75TR Chiller units	2
2	Auditorium	16HP VRF Units	1
2	School of Life science Block 6,7 th floor	18HP capacity Daikin make VRF system	1
3	Academic Blocks	Window AC	124
4	Academic Blocks	Split Ac units	217
5	Academic Blocks	Cassette type	32
7	Computer science block	12HP VRF Units	1
8	MBA block	16HP VRF Units	1
9	MBA block	5.5Ductable AC Units	1
6	School of Mechanical science Block 1 st floor Dean room	5HP capacity Daikin make VRF system	2
7	New Architecture block 2 nd floor	5HP VRF Unit	1
8	Green Room	2.5TR/2TR Cassette	2
9	Ladies Hostel	24HP VRF unit	1
10	Ladies Hostel	Window AC	4
11	Ladies Hostel	Split AC	17
12	Men's Hostel	24HP VRF unit	2
13	Men's Hostel	Window AC	2
14	Men's Hostel	Split AC	52
	TOTAL		463

6.2 Study of AC

VRF AC and Non Star rated AC –Split & Window has been used in offices. The SEC is more old split &

window AC's and the measured value is as follows:

Description	Unit	Window AC	Split AC
Air Flow(m)	m^3/hr	917	576
Air Flow(m)	CFM	539	339
Air Density(ρair)	kg/m^3	1.28	1.28
Air Dry bulb Temperature at Evaporator inlet	Deg C	24.3	27
Air Wet bulb Temperature at Evaporator inlet	Deg C	22	24
Enthalpy of air at evaporator inlet (hin)	kJ/kg	64.5	72.2
Air Dry bulb Temperature at Evaporator outlet	Deg C	20	22.1
Air Wet bulb Temperature at Evaporator outlet	Deg C	18	19.5
Enthalpy of air at evaporator outlet (hout)	kJ/kg	50.81	55.7
Definition Effect(0.)	kJ/h	16015	12167
Refrigeration Effect(Qe)	TR	1.3	1.0
Power input to the motor(W)	kW	2.3	1.5
Motor Efficiency	%	0.91	0.91
Estimated Compressor Shaft Power(Qin)	kW	2.1	1.4
Specific Power consumption(SPC)	kW/TR	1.65	1.46

It is suggested to replace the AC with 5 star rated or Inverter AC to reduce power consumption.

Split AC

6.3 Study of Chillers:

Blue star make Air cooler chiller of 74 TR capacity of 2 chillers has been used for Auditorium cooling.

The SEC is more and the measured value is as follows:

Air Cooled Chiller Performance Assessment					
			18 Fel		
Description		Unit	Chiller- 1	Chiller- 2	Remarks
	Chilled Water Set Temperature	۰C	8.0	7.0	
	Chilled Water Temperature Inlet	°C	19.2	19.2	
or	Chilled Water Temperature Outlet		17.2	17.7	
Evaporator	Measured pressure drop across Evaporator	m	4	4	
/apc	Chilled water flow through the chiller	m³/hr	32	38	
Ev	Cooling Capacity delivered by the Chiller	TR	21	19	
	Measured Compressor Input Power		39	36	
	Actual Chiller Specific Power Consumption	kW/TR	1.84	1.91	SPC high

It is suggested to replace the old Chillers with new energy efficient chillers to reduce power consumption.

7. PUMPS

7.1 Introduction

In CRESCENT - Chennai using Centrifugal Pumps for Chiller primary pumping, RO plant and water transfer from sump to OH tanks. The following table gives the rated parameters of Chiller Pumps.

Chiller Primary Pumps Details						
Description	Pump: 1	Pump: 2	Pump: 3			
Rated Power	5.5 kW	5.5 kW	5.5 kW			
Supply	415 V	415 V	415 V			
Total Head	25 m	25 m	25 m			
Rate of Flow	48 m³/hr	48 m³/hr	48 m³/hr			
Running Status	Running	Running	Standby			
VFD Availability	No No		No			
Mode Of Operation	Manual	Manual	Manual			

7.2 Study of Primary Pumps

Two Pumps are running and 1 pump is kept as standby. The measured parameters are as follows:

Chiller Primary Pump					
Description	Pump: 1	Pump: 2			
Suction Pressure (kg/cm ²)	1	1			
Discharge Pressure (kg/cm ²)	2.2	2.2			
Total Head (m)	12	12			
Flow (m³/hr)	35	35			
Measured Power (kW)	2.6	2.5			
Pump Efficiency (%)	49	51			

Standby pump control valve is not closed due to valve problem and the water is recirculating through pump-3. It is suggested to rectify valves to avoid recirculation flow for saving power consumption.

7.2 Study of domestic water supply Pumps

The Pumps details are as follows:

Description	Main block Pump room			Science	Old Quarters	
	Pump: 1	Pump: 2	Pump: 3	Pump: 1	Pump: 2	Pump: 1
Pump Make	Beacon	Kirloskar	Crompton		Kirloskar	
Total Head	35 m		36 m			
Rate of Flow			12 LPS			
Motor Make	Beacon	Kirloskar	Crompton		Kirloskar	
Rated Power	5.5 kW	5.5 kW	5.5 kW	5.5 kW	5.5 kW	5.5 kW
Supply	415 V	415 V	415 V	415 V	415 V	415 V
Overall Efficiency	50%		56%			
Running Status	Running	Running	Running	Running	Running	Running
VFD Availability	No	No	No	No	No	No
Mode Of Operation	Manual	Manual	Manual	Manual	Manual	Manual

		New	w Hostel P	ump room	ı	
Description	RO Pump-	Pump:	Pump:	Pump:	Pump:	Pump:
	1	2	3	4	5	6
Pump Make	Kirloskar	Kirloskar	Kirloskar	Kirloskar	Kirloskar	Kirloskar
Total Head		43~52 m	43~52 m	43~52 m	43~52 m	
Rate of Flow		7~3.5	7~3.5	7~3.5	7~3.5	
Kate of Flow		LPS	LPS	LPS	LPS	
Motor Make	Kirloskar	Kirloskar	Kirloskar	Kirloskar	Kirloskar	Kirloskar
Rated Power	5.5 kW	5.5 kW	5.5 kW	5.5 kW	5.5 kW	3.7 kW
Supply	415 V	415 V	415 V	415 V	415 V	415 V
Overall Efficiency	58%	47%	47%	47%	47%	
Running Status	Running	Running	Running	Running	Running	Running
VFD Availability	No	No	No	No	No	No
Mode Of Operation	Manual	Manual	Manual	Manual	Manual	Manual

		Old Hostel Pump room						
Description	Main block	MB LH	MB RH	Canteen	PG block			
Pump Make	Kirloskar	Kirloskar	Kirloskar	Kirloskar	Kirloskar			
Total Head								
Rate of Flow								
Motor Make	Kirloskar	Kirloskar	Kirloskar	Kirloskar	Kirloskar			
Rated Power	5.5 kW	5.5 kW	5.5 kW	5.5 kW	5.5 kW			
Supply	415 V	415 V	415 V	415 V	415 V			
Overall Efficiency								
Running Status	Running	Running	Running	Running	Running			
VFD Availability	No	No	No	No	No			
Mode Of Operation	Manual	Manual	Manual	Auto	Manual			

The measure values is as follows:

Description	Main block Pump room			Science	Old Quarters	
-	Pump: 1	Pump: 2	Pump: 3	Pump: 1	Pump: 2	Pump: 1
Suction Pressure (kg/cm ²)	-0.1	-0.1	-0.1	-0.2	-0.2	-0.1
Discharge Pressure (kg/cm ²)	2	2.2	3	2	2	2
Total Head (m)	21	23	31	22	22	21
Flow (m ³ /hr)	25	25	20	20	25	25
Measured Power (kW)	3.2	3.5	3.5	2.8	3.5	2.8
Pump Efficiency (%)	50	50	54	48	48	57

	New Hostel Pump room						
Description	RO Pump- 1	Pump: 2	Pump: 3	Pump: 4	Pump: 5	Pump: 6	
Suction Pressure (kg/cm ²)	-0.15	-0.1	-0.1	-0.1	-0.1	-0.1	
Discharge Pressure (kg/cm ²)	3	2	2	2	2	1.2	
Total Head (m)	31.5	21	21	21	21	13	
Flow (m ³ /hr)	30	25	25	25	25	20	
Measured Power (kW)	4.8	4.0	3.4	3.4	3.1	1.7	
Pump Efficiency (%)	60	40	47	47	51	46	

	Old Hostel Pump room					
Description	Main block	MB LH	MB RH	Canteen	PG block	
Suction Pressure (kg/cm ²)	-0.1	-0.1	-0.1	-0.1	-0.1	
Discharge Pressure (kg/cm ²)	2	1.5	2	2	1.2	
Total Head (m)	21	16	21	21	13	
Flow (m ³ /hr)	25	25	25	25	25	
Measured Power (kW)	3.5	2.5	4.0	4.1	2.6	
Pump Efficiency (%)	45	48	40	39	38	

It is found that the pumps are not having pressure gauges in suction and discharge lines. All pumps gauge provision has to be made. Overall design efficiency is low (47%) and it is suggested to replace Hostel pumps into new pumps to reduce power consumption. Auto tank filling control is not working in all pumps except canteen pump. It is recommended to rectify/install auto level control system to avoid tank overflow.

8. SOLAR WATER HEATER

8.1 Introduction

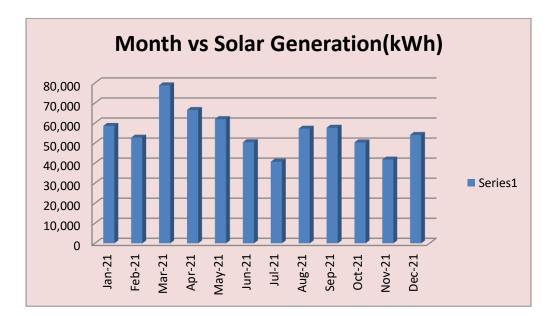
In CRESCENT - Chennai using Anu make and V-Guard make Solar water heaters for hot water in hostel and staff

quarters. The following table gives the heaters quantity list.

Location	Block	Quantity in Nos				
Location	DIUCK	Total	Working	Problem		
Gents hostel	A block	10	9	1		
	B block	6	6	0		
	C block	6	6	0		
	D block	8	6	2		
Ladies hostel	Main block	9	7	2		
	Annex building	11	8	3		
	New block	7	7	0		
Staff Quarters	New block	23	19	4		
Total		80	68	12		

8.2 Study of solar heaters

Out of 80 heaters 68 no's are working condition and balance 12 no's are repair/broken condition. Electrical heaters are fixed in solar water heaters to maintain the required temperature. It is suggested to rectify the problem heaters to avoid electrical heater switching ON.


Solar Heater

9. SOLAR POWER

650 kW Solar Roof top panel was installed in the college premises (Architecture block, Science block, Main block, Aerodynamic block, MBA block, Auditorium & CIIC area) and connected to sub panels. Month wise power generation graph is below:

Power generation is varied based on sunlight availability. Also sometimes to control the power factor, solar power is not feed to panels. It is suggested to connect into grid through net metering to reduce EB cost. Panel cleaning Robot is installed in CIIC area for trial purpose and it is suggested to install the Robots to all blocks to improve solar power generation.

10 DIESEL GENERATOR SYSTEM

CRESCENT - Chennai have Installed two Diesel Generator sets of (1*750 kVA) & (1*500 KVA). DG sets are mainly used during power shutdown in colleges. The specification details of the DG's are listed in the below table.

DG Name plate				
Description	Unit	750 kVA	500 kVA	
Make		Sterling	Cummins	
Capacity	kVA	750	500	
Power factor	COS ወ	0.8	0.8	
Speed	rpm	1500	1500	
Voltage	V	415	415	
Current	А	1043	696	
Phase		3	3	
Frequency	Hz	50	50	

DG running time is very minimal due to no power cut. Monthly diesel consumption and power generation details was take from log book and the details is as follows:

		750 kVA DG		500 kVA DG				
No	Months	Power generation (kW)	Diesel Consumption (Litres)	SEC	Power generation (kW)	Diesel Consumption (Litres)	SEC	Remarks
1	Jan-21	2853	1010	2.8	0	0		
2	Feb-21	3325	1370	2.4	0	0		
3	Mar-21	982	370	2.7	287	110	2.6	
4	Apr-21	1015	350	2.9	771	260	3.0	
5	May-21	0	0		1000	355	2.8	
6	Jun-21	14	5	2.8	761	325	2.3	
7	Jul-21	134	35	3.8	2050	685	3.0	
8	Aug-21	0	0		530	355	1.5	
9	Sep-21	1398	565	2.5	1468	611	2.4	
10	0ct-21	822	195	4.2	570	119	4.8	
11	Nov-21	1219	640	1.9	1733	560	3.1	
12	Dec-21	4414	1520	2.9	1717	530	3.2	
	Total	16,176	6,060	2.7	10,887	3,910	2.8	Low SEC

It is suggested to service the DG to improve performance.

Diesel Generator

11. ENERGY CONSERVATION PROPOSALS

ECM-1: Replace 1x36 W FTL Lamps with Energy Efficient LED Lamps

PRESENT SYSTEM

- 4 ft. 1x36W fluorescent tube lamps (FTL) are used at substation and other area
- Lamp efficacy is about 60-80 lumens/Watt
- 1x36/2x36 W FTLs have lamp life of < 8000 burning hours only
- Lumen depreciation Will be > 30% till end of life, leading to frequent maintenance & replacements
- Minimum voltage required is 180 V to ignite lamp

Existing 1x36 W Fluorescent Tube Lamp

PROPOSAL

- Replace existing 1x36W FTL lamps with Energy Efficient LED lamps
- Longer lamp life than conventional lamps
- 50% reduction in energy consumption with constant luminous flux compared with conventional lamps

PROPOSED 1x18 W LED TUBE

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 6,538
Investment Cost	: Rs 3,600
Payback period	: 7 Months

BACK-UP CALCULATION

Description	Unit	Value
Power Consumption of FTL lamps	W	40
Power consumption of LED	W	20
Total no of Lamps	No	20
Lamps Glowing Hours	Hours/day	8
Operating Days(Approx.)	Days/ Annum	300
Expected Energy Savings	kWh/Annum	960
Energy Cost	Rs/kWh	6.8
Monetary Savings	Rs./ Annum	6,528
Investment Cost	Rs	3,600
Payback period	Months	7

ECM-2: Replace 400 W Halogen lamps with Energy Efficient LED Lamps

PRESENT SYSTEM

- 400 W halogen lamps with electronic control gear are used in play ground
- Life and intensity of halogens reduces with passage of time
- This lamps are energy-intensive since they also produce intense heat

PROPOSAL

- Replace existing 400 W Halogen lamps with Energy Efficient 200 W LED Lamps
- This lamps with high efficiency and providing same or higher luminance
- It can operate with state-of-art new generation HF drivers, operates wide range of input voltage ex: 140-270V
- LED replaced in other area in offices

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 39,168
Investment Cost	: Rs 36,000
Payback period	: 11 Months

BACK-UP CALCULATION

Description	Unit	Value
Power Consumption of Halogen lamps	W	400
Power consumption of LED	kW	200
Total no of Lamps	No	12
Lamps Glowing Hours	Hours/day	8
Operating Days(Approx.)	Days/ Annum	300
Expected Energy Savings	kWh/Annum	5,760
Energy Cost	Rs/kWh	6.8
Monetary Savings	Rs./ Annum	39,168
Investment Cost	Rs	36,000
Payback period	Months	11

ECM-3: Replace CFL lamps with Energy Efficient LED Lamps and reduce power consumption

Present system

- Existing lighting installations with 1x11W CFL PL types are available in Auditorium
- Life span of these source is < 15000 burning Hrs., initiates frequent replacements

PROPOSAL

- Retrofit the existing fixture with 1x5 W LED Energy Efficient recess Mount in Auditorium.
- The proposed LEDs are most efficient and operational friendly compared to existing CFLs
- LEDs are specifically designed for operation within built electronic gear and well suited for particular wattage.
- Failure rate is very minimal than existing.

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 3,672
Investment Cost	: Rs 6,000
Payback period	: 20 Months

BACK-UP CALCULATION

Description	Unit	Value
Power Consumption of CFL lamps	W	11
Power consumption of LED	kW	5
Total no of Lamps	No	30
Lamps Glowing Hours	Hours/day	10
Operating Days(Approx.)	Days/ Annum	300
Expected Energy Savings	kWh/Annum	540
Energy Cost	Rs/kWh	6.8
Monetary Savings	Rs./ Annum	3,672
Investment Cost	Rs	6,000
Payback period	Months	20

ECM-4: Install Occupancy Sensors at identified location to save lighting power consumption

PRESENT SYSTEM

- At Substation and Estate office Toilet, all Lights and Fans are almost 'switched on' continuously irrespective of occupancy
- Average occupancy is around 6-8 hrs./day (guesstimated)

PROPOSAL

- Install movement/occupancy sensor with directional control
- Link the lights and fan with the proposed control device (with 50% outside the control for security and safety) so that the lights switches according to the occupancy
- To Install "light-loggers" to log the sensor controlled lighting and savings thereof
- This sensor already installed in office area

TYPICAL OCCUPANCY SENSOR MODEL

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 9,107
Investment Cost	: Rs 20,000
Payback period	: 26 Months

BACK-UP CALCULATION

Description	Unit	Sub station	Toilet	Total
Power Consumption of identified lamps	W	36	36	
No of Lamps available	No	7	2	
Lamps Glowing Hours-Present	Hours/day	24	12	
Lamps Glowing Hours-Proposed	Hours/day	8	6	
Savings	kW/day	4.0	0.4	4.5
Operating Days(Approx.)	Days/ Annum	300	300	
Expected Energy Savings	kWh/Annum	1,210	130	1,339
Energy Cost	Rs/kWh	6.8	6.8	
Monetary Savings	Rs	8,225	881	9,107
Investment Cost	Rs	10,000	10,000	20,000
Payback period	Months	15	136	26

ECM 5 Replace conventional ceiling fans with EE BLDC fans

PRESENT SYSTEM

- Ceiling fans are used in office and hostel.
- All fans are conventional type.
- This leads to high power consumption

PROPOSAL

- Replace conventional ceiling fans into energy efficient BLDC fans
- BLDC fans consumes less energy
- This will reduce power consumption.
- Replacement considered for 100 no's for initial

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 75,480
Investment Cost	: Rs 3, 00, 000
Payback period	: 48 Months

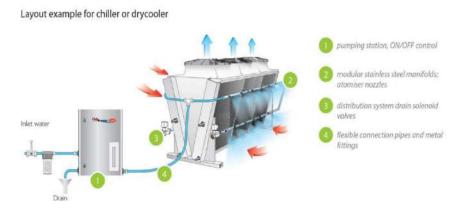
BACK-UP CALCULATION

Description	Unit	Value
Present power consumption of existing fans	W	72
Proposed power consumption of BLDC fans	W	35
No of fans	No	100
Expected Energy Savings	kWh	3.7
Running Hours	Hours	10
Working Days	Days	300
Annual Energy Savings	kWh	11,100
Energy Cost	Rs/kWh	6.8
Annual Cost Savings	Rs	75,480
Investment Cost	Rs	3,00,000
Payback Period	Months	48

ECM-6: Replace In-efficient Air Cooled Chiller with Energy Efficient Air Cooled Chiller

PRESENT SYSTEM

- 2x75 TR Blue Star make Air-cooled reciprocating chillers are installed for Auditorium comfort airconditioning
- Both chillers are operated and Chillers are running continuously to achieve set point of 7°C.
- Design Specific power consumption of Present Air-cooled Chiller is 1.3 kW/TR.
- Measured Specific power consumption of Present Air-cooled Chiller is 1.8 kW/TR.


Chiller

PROPOSAL

- Replace Existing In-efficient Air-Cooled chiller with Energy Efficient Air Cooled Chiller. It will reduce chiller specific power consumption.
- Install evaporative cooling system for new chiller before the condenser fins to supply cool air closer to wet bulb temperature
- This can be implemented through chiller manufacturer or OEM authorized agency

EVAPORATIVE COOLING SYSTEM

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 5.24,960
Investment Cost	: Rs 30, 00,000
Payback period	: 69 Months

BACK-UP CALCULATION

Description	Unit	Value
Year-long average load on the chiller	TR	75
Specific power consumption of Air Cooled Chiller	kW/TR	1.8
Specific power consumption of proposed Air Cooled Chiller	kW/TR	1.10
Power savings	kW	53.6
Annual operating hours	h	1,440
Annual electricity savings	kWh	77,200
Unit Cost	Rs.	6.8
Recurring annual cost savings	Rs.	5,24,960
One time cost of implementation	Rs.	30,00,000
Payback period	Months	69

ECM-7: Provide pipe line to fill the sump to avoid multiple pumping

PRESENT SYSTEM

- Canteen pump is supplying water main block sump.
- Main block pump(old hostel) is pumping water from sump into OH tank
- No pipe line available for filling water from tanker into main block sump directly
- This multiple pumping leads to wastage of power consumption

Main Block Pump

PROPOSAL

- Provide pipe line from tanker reachable area to main block sump
- This will reduce the operating time of the canteen pump
- This will save power consumption

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 16,600
Investment Cost	: Rs 10,000
Payback period	: 7 Months

BACK-UP CALCULATION

Description	Unit	Value
Measured power consumption of existing pump	kW	3.5
Average pump running hours	Н	2
Annual operating days	Days	350
Electricity savings	kW	2,450
Electricity cost	Rs/kWh	6.80
Recurring annual cost savings	Rs	16,660
One time cost of implementation	Rs	10,000
Payback period	months	7

ECM-8: Switch OFF PG block pump and use well pump to supply to OH tank

PRESENT SYSTEM

- Well pump is supplying water from well to PG block sump.
- PG block pump is pumping water from sump into OH tank
- This multiple pumping leads to wastage of power consumption

PG block pump

PROPOSAL

- Connect well pump pipe line to OH tank
- Switch OFF sump pump
- This will save power consumption

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 12,376
Investment Cost	: Nil
Payback period	: Immediate

BACK-UP CALCULATION

Description	Unit	PG block Pump
Measured power consumption of existing pump	kW	2.6
Average pump running hours	h	2
Annual operating days	Days	350
Electricity savings	kW	1820
Electricity cost	Rs/kWh	6.80
Recurring annual cost savings	Rs	12,376
One time cost of implementation	Rs	Nil
Payback period	months	Immediate

ECM-9: Replace identified water pumps with EE pumps and reduce energy consumption

PRESENT SYSTEM

- Kirloskar make 4 Centrifugal water pumps each supplying water to A, B, C & D block.
- Overall combined efficiency of Pump and Motor is 47% which is low
- This leads to more power consumption

New hostel pumps

PROPOSAL

- Replace all pumps with energy efficient pumps
- Switch OFF the sump pump
- This will save power consumption

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 46,010
Investment Cost	: Rs 2, 20,000
Payback period	: 57 months

BACK-UP CALCULATION

Description	Unit	A block Pump	B block Pump	C block Pump	D block Pump	Total
Power consumption of existing pump	kW	4.0	3.4	3.3	3.1	
Present combined efficiency	%	47	47	47	47	
Proposed combined efficiency	%	67	67	67	67	
Estimated power consumption	kW	2.8	2.4	2.3	2.2	9.7
Electricity savings	kW	0.9	0.8	0.7	0.7	3.1
Average annual operating hours	h	2,190	2,190	2,190	2,190	
Annual energy savings	kWh	1,961	1,667	1,618	1,520	6,766
Electricity cost	Rs/kWh	6.80	6.80	6.80	6.80	
Recurring annual cost savings	Rs	13,336	11,336	11,002	10,335	46,010
One time cost of implementation	Rs	55,000	55,000	55,000	55,000	2,20,000
Payback period	months	49	58	60	64	57

ECM 10 Reduce Contract Demand and save Demand cost

PRESENT SYSTEM

- Present Contract demand is 1200 kVA.
- Max demand reached 763 kVA (Dec 2021) and billing demand is 1080 kVA
- Additional 100 kVA demand considered for new chiller and additional projects
- Excess demand cost unnecessarily paying to TNEB

PROPOSAL

- Reduce the contract demand from 1200 kVA to 1000 kVA
- Billing demand reduced to 900 kVA and saving of 180 kVA monthly
- This will reduce EB cost

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 7, 56, 000
Investment Cost	: Nil
Payback period	: Immediate

BACK-UP CALCULATION

Description	Unit	Value
Contract Demand from TNEB	kVA	1200
Minimum Billing Demand	kVA	1080
Actual Recorded Maximum Demand	kVA	763
Proposed Contract Demand from TNEB	kVA	1000
Proposed Minimum Billing Demand	kVA	900
Demand Cost	Rs/k VA	350
Present Demand Cost per Month	Rs	3,78,000
Proposed Demand Cost per Month	Rs	3,15,000
Demand Cost Savings per month	Rs	63,000
Demand Cost Savings per year	Rs	7,56,000
One Time Investment Cost	Rs	Nil
Payback Period	Month	Immediate

ECM-11: Clean Solar Roof Top Panel and increase power generation

PRESENT SYSTEM

- 650 kW Roof top Solar Plant installed in Crescent premises
- Average solar generation per month is around 55,936 Units
- Per day average generation is around 3.4 units from Roof Top Panel

Solar Power Panel

PROPOSAL

- Clean the Solar Roof Top panel frequently-Manual or Robot cleaning
- Install Robot for cleaning of panels periodically (Payback is higher now)
- Check OEM for the guaranteed power generation for the life period-Refer Technical spec given by OEM during installation
- This will increase solar power generation.

ESTIMATED BENEFITS

Recurring annual cost savings	: Rs 14, 02,643
Investment Cost	: Rs 1, 00, 00,000
Payback period	: 86 Months

BACK-UP CALCULATION

Description	Unit	Value
Solar plant capacity	kW	650
Expected power generation by the plant	kwh/Annum	8,77,500
Actual power generation by the plant	kwh/Annum	6,71,229
Additional power to be generated	kwh/Annum	2,06,271
Unit Cost saving	Rs./kWh	6.8
Annual Cost Savings	Rs	14,02,643
Investment cost	Rs	1,00,00,000
Payback Period	Months	86

Note:

Client has received quote for Robot installation and estimated cost is around 2.25 Crores. It is suggested to install 50% panels Robot cleaning in initial stage where dust accumulation is more.

12. CONCLUSION

- On an energy bill of Rs 166 lacs, 13% savings can be achieved by implementing the identified energy saving schemes.
- The annual savings potential is Rs 29 lacs which can be gained by investing Rs 136 lacs with an average payback period of 56 months.
- The annual MTOE saving potential is 27 MTOE.
- The implementation of the evaluated schemes needs to be taken up for implementation in a time bound manner within an upper limit period of two year.
- It is recommended to install dedicated energy meters and energy monitoring system before implementing the schemes. This is required for establishing the baseline as well as for measurement and verification of savings upon implementation of each scheme.
- CRESCENT to reconfirm the investments by obtaining site-specific offers covering performance guarantee for savings.

Walk-thru Energy Audit Report

Of

Crescent Institute of Science & Technology

Vandalur, Chennai

24th Mar 2021

CONDUCTED BY

Walk-thru EA Report Of Crescent Institute of Science & Technology

ACKNOWLEDGEMENT

Petroleum Conservation Research Association is thankful to the management of **Crescent Institute of Science & Technology** for allowing us to carry out a Walk-thru energy audit at their premises. The report is based on the field observations and the data provided/observed during the study. This is the walk-thru audit only, if **Crescent** agrees then we can do the detailed energy audit also. PCRA appreciates the keen interest and involvement shown by **Dr.A.K. Kaliluthin, Deputy Director.**

PCRA is thankful to all the staff who were helpful to complete the field study successfully. Last, but not the least, we express our thanks for the hospitality and courtesy shown by the management and all the staff of the office.

Mr.R. Nesamani

Jt. Director-PCRA SR

Mr.M. Srinivasan

Sector Expert-PCRA SR

Walk-thru EA Report Of Crescent Institute of Science & Technology

1. UNIT DETAILS

Name of the unit	Crescent Institute of Science & Technology		
Address of the Unit	Seethakathi Estate, GST Road, Vandalur, Chennai, Tamilnadu-600 048.		
Coordination In-charge	Mr. Rajkumar		
Major product manufactured	Science College		
Name of the PCRA staff involved in study	R. Nesamani & M. Srinivasan		
Value of Energy Saving identified	36.2 KLOE/Annum		

EXECUTIVE SUMMARY - Crescent							
ECM. No	Energy Conservation Measures	Annual Savings		Investment	Payback		
		kWh	Rs.	Rs.	Months		
1	Replace FTL lamps with LED lamps in Office/Class room /Hostel / Quarters	1,36,000	13,60,000	17,00,000	15		
2	Replace conventional type fans with BLDC fans in Office/Class room/Hostel/Quarters	2,41,500	24,15,000	86,25,000	43		
3	Replace Night lamps with LED lamps in Hostel/Quarters	43,800	4,38,000	1,25,000	3		
Summary of Savings							
1	Fotal Annual kWh Savings by EB	4,21,300	42,13,000	1,04,50,000	30		
	Annual Savings in KLOE by EB consumption 36.2						

Savings calculation with payback period will be given after conducting detailed Energy Audit

2. Equipment's list: -

Equipment list					
Description	Capacity	Quantity in No's			
Transformer	750 kVA	2			
Transformer	500 kVA	1			
DG	750 kVA	1			
DG	500 kVA	1			
Lifts	NA	23			
Chiller	75TR	2			
VRF AC	12 TR	12			
Window/Split AC	1~2 TR	350			
FTL/CFL lights	40 W	3400			
Ceiling Fan	70 W	3450			

3. Energy Savings: -

Total oil Savings Identified is 36.2 KLOE/Annum. It is suggested that the unit shall conduct the detailed energy audit to find out more ECM and also to get details on each ECM.

Other observations: -

- 1) Window/Split AC has to be replaced with 5 star rated AC
- 2) Chiller performance study to be conducted & replace if SEC is more
- 3) Halogen lamps to be replaced with LED lamps
- 4) Pumps performance to be study during detailed energy audit
- 5) Solar rooftop performance to be studied